The flow induced by a round turbulent offset jet in a low-aspect ratio cylinder is investigated experimentally, with applications to degassing of U.S. Strategic Petroleum Reserves (SPR). Particle image velocimetry and flow visualization are used for flow diagnostics. The measurements include the jet penetration (mixing) depth l, jet spreading rate, and the mean velocity/vorticity fields for different offset positions Δ. With the introduction of offset, the flow patterns change drastically. For 0 < Δ/D < 0.2 the jet deflects toward the wall while precessing (as in the axisymmetric case), for 0.2 < Δ/D < 0.4 the jet hugs the wall but with an oscillating tail, and for 0.45 < Δ/D the jet appears as a wall jet. In all cases, the jet is destroyed at a certain distance (mixing or penetration depth) from the origin. This mixing depth takes its lowest value for 0 < Δ/D < 0.2, with l ≈ (3.2–3.6)D, becomes maximum at Δ/D = 0.4 with l ≈ 5.2D, and drops to l ≈ 4.5D when the jet is close to the wall. Recommendations are made for suitable Δ/D values for optimal operation of SPR degassing.