Wylie,
E. B.
, and
Streeter,
V. L.
, 1978, Fluid Transients,
McGraw-Hill,
New York.

Mei, C. C., and Jing, H., 2016, “Pressure and Wall Shear Stress in Blood Hammer—Analytical Theory,” Math. Biosci.,
280, pp. 62–70.

Woods,
R. L.
, 1981, “
The Effects of Source and Load Impedance Connected to Fluid Transmission Lines,” Fluid Transmission Lines Dynamics,
ASME Special Publication I,
New York.

Chaudhry,
M. H.
, 1987, Applied Hydraulic Transients,
Van Nostrand Reinhold,
New York.

Watton,
J.
, 1989, Fluid Power Systems,
Prentice Hall,
New York.

Hullender,
D. A.
, 1990, “
Effects of Fluid Transmission Lines in Pressure Measurement,” Instrumentation and Control—Fundamentals and Applications,
Wiley,
Hoboken, NJ, pp. 434–438.

Yang,
W. C.
,
Glidewell,
J. M.
,
Tobler,
W. E.
, and
Chui,
G. K.
, 1991, “
Dynamic Modeling and Analysis of Automotive Multi-Port Electronic Fuel Delivery System,” ASME J. Dyn. Syst. Meas. Control,
113(1), pp. 143–151.

[CrossRef]
Glidewell,
J. M.
,
Yang,
W. C.
, and
Chui,
G. K.
, 1993, “
On-Board Diagnostic Strategy for Multi-Port Electronic Fuel Injection Systems Using Fuel Transient Analysis,” Advanced Automotive Technologies: ASME Winter Annual Meeting, New Orleans, LA, Nov. 28–Dec. 3, pp. 257–265.

Yang,
W. C.
, and
Tobler,
W. E.
, 1993, “
Dynamic Modeling and Analysis of Electronically Controlled Power Steering System,” Advanced Automotive Technologies: ASME Winter Annual Meeting, New Orleans, LA, Nov. 28–Dec. 3, pp. 267–278.

Wylie,
E. B.
, and
Streeter,
V. L.
, 1993, Fluid Transients in Systems,
Prentice Hall,
Upper Saddle River, NJ.

Woods,
R. L.
, and
Lawrence,
K. L.
, 1997, Modeling and Simulation of Dynamic Systems,
Prentice Hall,
Upper Saddle River, NJ.

Liou,
J. Y.
, and
Li,
G.
, 2003, “
Transient Pressure Measurements by Recess-Mounted Transducers,” ASME Paper No. FEDSM2003-45252.

Piskin, S., and Celebi, M. S., 2013, “Analysis of the Effects of Different Pulsatile Inlet Profiles on the Hemodynamical Properties of Blood Flow in Patient Specific Carotid Artery With Stenosis,” Comput. Biol. Med.,
43(6), pp. 717–728.

Eshtehardi, P., and Teng, Z., 2016, “
Protective or Destructive: High Wall Shear Stress and Atherosclerosis,” J. Atherosclerosis,
251, pp. 501–503.

Bergant,
A.
,
Anderson,
A.
,
Nicolet,
C.
,
Karadzic,
U.
, and
Mazij,
J.
, 2012, “
Issues Related to Fluid Transients in Refurbished and Upgraded Hydropower Schemes,” BHR Group—11th International Conferences on Pressure Surges, Lisbon, Portugal, Oct. 24–26, pp. 15–25.

Gong,
J.
,
Lambert,
M. F.
,
Simpson,
A. R.
, and
Zecchin,
A. C.
, 2012, “
Distributed Deterioration Detection in Single Pipelines Using Transient Measurements From Pressure Transducer Pairs,” BHR Group—11th International Conferences on Pressure Surges, Lisbon, Portugal, Oct. 24–26, pp. 127–140.

Shamloo,
H.
, and
Mousavifard
, 2015, “
Numerical Simulation of Turbulent Pipe Flow for Water Hammer,” ASME J. Fluids Eng.,
137(11), p. 111203.

[CrossRef]
Mu,
D.-J.
,
Li,
C.-C.
,
Yan,
H.
, and
Sun,
M.
, 2012, “
Characteristic-Based Numerical Analysis of Transitional Flow in Servo-Controlled Hydraulic Pipelines,” Binggong Xuebao/Acta Armanentarii,
33(12), pp. 1455–1460.

Gong,
J.
,
Simpson,
A. R.
,
Lambert,
M. F.
,
Zecchin,
A. C.
,
Kim,
Y.
, and
Tijsseling,
A. S.
, 2013, “
Detection of Distributed Deterioration in Single Pipes Using Transient Reflections,” ASCE J. Pipeline Syst. Eng. Pract.,
4(1), pp. 32–40.

[CrossRef]
Zecchin,
A. C.
,
White,
L. B.
,
Lambert,
M. F.
, and
Simpson,
A. R.
, 2013, “
Parameter Identification of Fluid Line Networks by Frequency-Domain Maximum Likelihood Estimation,” Mech. Syst. Signal Process.,
37(1–2), pp. 370–387.

[CrossRef]
Wahba,
E. M.
, 2015, “
On the Propagation and Attenuation of Turbulent Fluid Transients in Circular Pipes,” ASME J. Fluids Eng.,
138(3), p. 031106.

[CrossRef]
Tazraei,
P.
, and
Riasi,
A.
, 2016, “
Quasi-Two-Dimensional Numerical Analysis of Fast Transient Flow Considering Non-Newtonian Effects,” ASME J. Fluids Eng.,
138(1), p. 011203.

[CrossRef]
Oliveira,
G. M.
,
Franco,
A. T.
, and
Negrao,
C. O. R.
, 2016, “
Mathematical Model for Viscoplastic Fluid Hammer,” ASME J. Fluids Eng.,
138(1), p. 011301.

[CrossRef]
Chaudhry,
M. H.
, 2014, Applied Hydraulic Transients,
Springer,
New York.

[CrossRef]
Joukowski,
N. E.
, 1898, Memoirs of the Imperial Academy Society of St. Petersburg, Vol. 24, American Water Works Association, Denver, CO, pp. 341–424.

Allievi,
L.
, 1929, The Theory of Water Hammer,
ASME,
New York.

Brown,
F. T.
, 1962, “
The Transient Response of Fluid Lines,” ASME J. Basic Eng.,
84(4), pp. 547–553.

[CrossRef]
Streeter,
V. L.
, and
Wylie,
E. B.
, 1967, Hydraulic Transients,
McGraw-Hill,
New York.

Paynter,
H. M.
, 1962, “
Lumped Structures, Methods, and Apparatus and Approximations of Uniform Media by Lumped Structures,” U.S. Patent No. 3,044,703.

Streeter,
V. L.
, and
Wylie,
E. B.
, 1974, “
Water Hammer and Surge Control,” Annu. Rev. Fluid Mech.,
6(1), pp. 57–73.

[CrossRef]
Bird,
R. B.
,
Armstrong,
R. C.
, and
Hassager,
O.
, 1987, Dynamics of Polymeric Liquids, 2nd ed., Vol.
1,
Wiley,
New York, Chap. 2.

Ghidaoui,
M. S.
,
Zhao,
M.
,
McInnis,
D. A.
, and
Axworthy,
D. H.
, 2005, “
A Review of Water Hammer Theory and Practice,” ASME J. Appl. Mech.,
58(1), pp. 49–76.

[CrossRef]
Bergant,
A.
,
Simpson,
A. R.
, and
Tijsseling,
A. S.
, 2006, “
Water Hammer With Column Separation: A Historical Review,” J. Fluids Struct.,
22(2), pp. 135–171.

[CrossRef]
Brunone,
B.
,
Karney,
B. W.
,
Mecarelli,
M.
, and
Ferrante,
M.
, 2000, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow,” ASCE J. Water Resour. Plann. Manage.,
126(4), pp. 236–244.

[CrossRef]
Brunone,
B.
,
Ferrante,
M.
, and
Cacciamani,
M.
, 2004, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow,” ASME J. Fluids Eng.,
126(6), pp. 928–934.

[CrossRef]
Vardy,
A. E.
, and
Brown,
J. M. B.
, 2003, “
Transient Turbulent Friction in Smooth Pipe Flows,” J. Sound Vib.,
259(5), pp. 1011–1036.

[CrossRef]
Weinerowska-Bords,
K.
, 2015, “
Alternative Approach to Convolution Term of Viscoelasticity in Equations of Unsteady Pipe Flow,” ASME J. Fluids Eng.,
137(5), p. 054501.

[CrossRef]
Meniconi,
S.
,
Duan,
H. F.
,
Brunone,
B.
,
Ghidaoui,
M. S.
,
Lee,
P. J.
, and
Ferrante,
M.
, 2014, “
Further Developments in Rapidly Decelerating Turbulent Pipe Flow Modeling,” ASCE J. Hydraul. Eng.,
140(7), p. 04014028.

[CrossRef]
Pezzinga,
G.
,
Brunone,
B.
,
Cannizzaro,
D.
,
Ferrante,
M.
,
Meniconi,
S.
, and
Berni,
A.
, 2014, “
Two-Dimensional Features of Viscoelastic Models of Pipe Transients,” ASCE J. Hydraul. Eng.,
140(8), p. 04014036.

[CrossRef]
Storli,
P.
, and
Nielsen,
T. K.
, 2011, “
Transient Friction in Pressurized Pipes—I: Investigation of Zielke's Model,” ASCE J. Hydraul. Eng.,
137(5), pp. 557–584.

[CrossRef]
Duan,
H. F.
,
Ghidaoui,
M. S.
,
Lee,
P. J.
, and
Tung,
Y. K.
, 2012, “
Relevance of Unsteady Friction to Pipe Size and Length in Pipe Fluid Transients,” ASCE J. Hydraul. Eng.,
138(2), pp. 154–166.

[CrossRef]
Johnston,
D. N.
, 2011, “
Numerical Modelling of Unsteady Turbulent Flow in Smooth-Walled Pipes,” Proc. Inst. Mech. Eng., Part C,
225(7), pp. 1601–1613.

[CrossRef]
Zhao,
M.
, and
Ghidaoui,
M. S.
, 2006, “
Investigation of Turbulence Behavior in Pipe Transient Using a
κ−ε Model,” J. Hydraul. Res.,
44(5), pp. 682–692.

[CrossRef]
Vardy,
A. E.
,
Brown,
J. M. B.
, and
Hwang,
K.
, 1993, “
A Weighting Function Model of Transient Turbulent Pipe Friction,” ASCE J. Hydraul. Res.,
31(4), pp. 533–548.

[CrossRef]
Stecki,
J. S.
, and
Davis,
D. C.
, 1985, “
Fluid Transmission Lines—Distributed Parameter Models—Part 1: A Review of the State of the Art,” Proc. Inst. Mech. Eng.,
200(4), pp. 215–228.

[CrossRef]
Goodson,
R. E.
, and
Leonard,
R. G.
, 1971, “
A Survey of Modeling Techniques for Fluid Line Transients,” ASME J. Basic Eng.,
94(2), pp. 474–482.

Azouz,
I.
, and
Shirazi,
S. A.
, 1998, “
Evaluation of Several Turbulence Models for Turbulent Flow in Concentric and Eccentric Annuli,” ASME J. Energy Resour. Technol.,
120(4), pp. 268–275.

[CrossRef]
Anderson,
A.
, and
Bergant,
A.
, 2008, “Issues in ‘Benchmarking' Fluid Transients Software Models,” Tenth International Conference on Pressure Surges, Edinburgh, UK, May 14–16, pp. 519–537.

Adamkowski,
A.
, and
Lewandowski,
M.
, 2006, “
Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation,” ASME J. Fluids Eng.,
128(6), pp. 1351–1363.

[CrossRef]
Ghidaoui,
M. S.
, and
Mansour,
S.
, 2002, “
Efficient Treatment of the Vardy-Brown Unsteady Shear in Pipe Transients,” ASCE J. Hydraul. Eng.,
128(1), pp. 102–112.

[CrossRef]
Gerlach,
C. R.
, 1966, “
The Dynamics of Viscous Fluid Transmission Lines With Particular Emphasis on Higher Mode Propagation,” Ph.D. dissertation, Oklahoma State University, Stillwater, OK.

Zielke,
W.
, 1968, “
Frequency-Dependent Friction in Transient Pipe Plow,” ASME J. Basic Eng.,
90(1), pp. 109–115.

[CrossRef]
Brown,
F. T.
,
Margolis,
D. L.
, and
Shah,
R. P.
, 1969, “
Small-Amplitude Frequency Behavior of Fluid Lines With Turbulent Flow,” ASME J. Basic Eng., Ser. D,
91(4), pp. 678–693.

[CrossRef]
Gerlach,
C. R.
, 1969, “
Dynamic Models for Viscous Fluid Transmission Lines,” Tenth Joint Automatic Control Conference, Boulder, CO, Aug. 5–7, pp. 416–424.

Suzuki,
K.
,
Taketomi,
T.
, and
Sato,
S.
, 1991, “
Improving Zielke's Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow,” ASME J. Fluids Eng.,
113(4), pp. 569–573.

[CrossRef]
Karam,
J. T.
, and
Leonard,
R. G.
, 1973, “
A Simple Yet Theoretically Based Time Domain Model for Fluid Transmission Line Systems,” ASME J. Fluids Eng.,
95(4), pp. 498–504.

[CrossRef]
Trikha,
A. K.
, 1975, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow,” ASME J. Fluids Eng.,
97(1), pp. 97–105.

[CrossRef]
Vardy,
A. E.
, and
Brown,
J. M. B.
, 2004, “
Efficient Approximation of Unsteady Friction Weighting Functions,” J. Hydraul. Eng.,
130(11), pp. 1097–1107.

[CrossRef]
Jianing,
P.
, 2003, “
A Novel Technique for Analyzing Hydraulic Transients By Method of Characteristics,” ASME Paper No. FEDSM2003-45250.

Shimada,
M.
, and
Vardy,
A. E.
, 2013, “
Nonlinear Interaction of Friction and Inter-Polation Errors in Unsteady Flow Analyses,” ASCE J. Hydraul. Eng.,
139(4), pp. 397–409.

[CrossRef]
Riasi,
A.
,
Nourbakhsh,
A.
, and
Raisee,
M.
, 2013, “
Energy Dissipation in Unsteady Turbulent Pipe Flows Caused by Water Hammer,” Comput. Fluids,
73(1), pp. 124–133.

[CrossRef]
Vardy,
A. E.
, 2008, “
Method of Characteristics in Quasi-Steady Compressible Flows,” Tenth International Conference on Pressure Surges, Edinburgh, UK, May 14–16, pp. 505–518.

Szymkiewicz,
R.
, and
Mitosek,
M.
, 2014, “
Alternative Convolution Approach to Friction in Unsteady Pipe Flow,” ASME J. Fluids Eng.,
136(1), p. 011202.

[CrossRef]
Pezzinga,
G.
, 2000, “
Evaluation of Unsteady Flow Resistances by Quasi-2D or 1D Models,” J. Hydraul. Eng.,
126(10), pp. 778–785.

[CrossRef]
Vardy,
A. E.
, and
Hwang,
K.-L.
, 1991, “
A Characteristic Model of Transient Friction in Pipes,” J. Hydraul. Res.,
29(5), pp. 669–683.

[CrossRef]
Brunone,
B.
, and
Golia,
U. M.
, 2008, “
Discussion of ‘Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines,” J. Hydraul. Eng.,
134(2), pp. 282–284.

[CrossRef]
Brunone,
B.
, and
Berni,
A.
, 2010, “
Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement,” ASCE J. Hydraul. Eng.,
136(10), pp. 716–726.

[CrossRef]
Vardy,
A. E.
, and
Brown,
J. M. B.
, 1995, “
Transient, Turbulent, Smooth Pipe Flow,” J. Hydraul. Res.,
33(4), pp. 435–456.

[CrossRef]
Ghidaoui,
M. S.
,
Mansour,
S. G. S.
, and
Zhao,
M.
, 2002, “
Applicability of Quasisteady and Axisymmetric Turbulence Models in Water Hammer,” J. Hydraul. Eng.,
128(10), pp. 917–924.

[CrossRef]
Ferras, L. L.
,
Nobrega, J. M.
, and
Pinho, F. T.
, 2012, “
Analytical Solutions for Newtonian and Inelastic Non-Newtonian Flows With Wall Slip,” J. Non-Newtonian Fluid Mech.,
175–176, pp. 76–88.

Hullender,
D.
, and
Healey,
A.
, 1981, “
State Variable Representation of Modal Approximation for Fluid Transmission Line Models,” Fluid Transmission Lines Dynamics,
ASME Special Publication I,
New York.

Hullender,
D.
, and
Healey,
A. J.
, 1981, “
Rational Polynomial Approximation for Fluid Transmission Line Models,” Fluid Transmission Lines Dynamics,
ASME Special Publication, I,
New York.

Hullender,
D.
,
Woods,
R.
, and
Hunn,
R.
, 1981, “
Transfer Functions for Fluid Transmission Lines With Differential Signals,” Fluid Transmission Lines Dynamics,
ASME Special Publication I,
New York.

Hsue,
C. Y.
, and
Hullender,
D. A.
, 1983, “
Modal Approximations for the Fluid Dynamics of Hydraulic and Pneumatic Transmission Lines,” Fluid Transmission Lines Dynamics,
ASME Special Publication II,
New York.

Hullender,
D. A.
, and
Woods,
R. L.
, 1983, “
Time Domain Simulation of Fluid Transmission Lines Using Minimum Order State Variable Models,” Fluid Transmission Lines Dynamics,
ASME Special Publication II,
New York.

Hullender, D. A.
,
Snyder, N.
, and
Gans, J.
, 2017, “
Application of an Analytical Model for Simulating Hydraulic Systems Containing Internal Lines With Turbulent Flow,” ASME Paper No. FPMC2017-4202.

Yang,
W.-C.
, 1983, “
Modal Approximation of Hydraulic Transmission Line Models by Using Simplified Bessel Function Ratio,” M.S. thesis, The University of Texas at Arlington, Arlington, TX.

Nursilo,
W. S.
, 2000, “
Fluid Transmission Line Dynamics,” Ph.D. dissertation, The University of Texas at Arlington, Arlington, TX.

Book,
W. J.
, and
Watson,
C.
, 2000, “
Alternatives in the Generation of Time Domain Models of Fluid Lines Using Frequency Domain Techniques,” Math. Comput. Simul.,
53(4–6), pp. 353–365.

[CrossRef]
Brunone,
B.
, and
Morelli,
L.
, 1999, “
Automatic Control Valve Induced Transients in an Operative Pipe System,” J. Hydraul. Eng.,
125(5), pp. 534–542.

[CrossRef]
Soumelidis,
M. I.
,
Johnston,
D. N.
, and
Edge,
K. A.
, 2005, “
A Comparative Study of Modeling Techniques for Laminar Flow Transients in Hydraulic Pipelines,” JFPS International Symposium on Fluid Power, Fukuoka, Japan, Nov. 7–10, pp. 100–105.

Johnston,
D. N.
, 2006, “
Efficient Methods for Numerical Modeling of Laminar Friction in Fluid Lines,” ASME J. Dyn. Syst. Meas. Control,
128(4), pp. 829–834.

[CrossRef]
Kojima,
E.
,
Yamazaki,
T.
, and
Shinada,
M.
, 2006, “
Development of a New Simulation Technique Based on the Modal Approximation for Fluid Transients in Complex Pipeline Systems With Time-Variant Nonlinear Boundary Conditions,” ASME J. Fluids Eng.,
129(6), pp. 791–798.

[CrossRef]
Johnston,
D. N.
, 2006, “
A Time Domain Model of Axial Wave Propagation in Liquid-Filled Flexible Hoses,” Proc. Inst. Mech. Eng., Part I,
220(7), pp. 517–530.

Zecchin,
A. C.
, 2009, “
Inverse Laplace Transform for Transient-State Fluid Line Network Simulation,” J. Eng. Mech.,
135(6), pp. 538–547.

[CrossRef]
Axin,
M.
,
Braun,
R.
, and
Dell'Amico,
A.
, 2010, “
Next Generation Simulation Software Using Transmission Line Elements,” Bath/ASME Symposium on Fluid Power and Motion Control, Bath, UK, Sept. 15–17.

Eriksson, B., and Krus, P., 2014, “
Flow Versus Pressure Control of Pumps in Mobile Hydraulic Systems,” J. Syst. Control Eng.,
228(4), pp. 245–256.

Vitkovsky,
J. P.
,
Lee,
P. J.
,
Zecchin,
A. C.
,
Simpson,
A. R.
, and
Lambert,
M. F.
, 2011, “
Head- and Flow-Based Formulations for Frequency Domain Analysis of Fluid Transients in Arbitrary Pipe Networks,” J. Hydraul. Eng.,
137(5), pp. 556–568.

[CrossRef]
Chen,
H.-Y.
,
Liu,
H.-J.
,
Chen,
J.-H.
, and
Liu,
S.
, 2012, “
Numerical Simulation of Fluid Transients by Chebyshev Super Spectral Viscosity Method for Propellant Lines,” J. Propul. Technol.,
33(5), pp. 804–808.

Johnston,
N.
,
Pan,
N.
, and
Kudzma,
S.
, 2014, “
An Enhanced Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines,” J. Syst. Control Eng.,
228(4), pp. 193–206.

Huang,
Y.-W.
, 2012, “
Lumped Parameter Modeling of Fluid Line Dynamics With Turbulent Flow Conditions,” Ph.D. dissertation, University of Texas at Arlington, Arlington, TX.

Woods,
R. L.
,
Hsu,
C. H.
,
Chung,
C. H.
, and
Keyser,
D. R.
, 1983, “
Comparison of Theoretical and Experimental Fluid Line Responses With Source and Load Impedances,” Fluid Transmission Lines Dynamics,
ASME Special Publication II,
New York.

D'Souza,
A. F.
, 1963, “
Dynamic Response of fluid Flow through Straight and Curved Lines,” Ph.D. dissertation, Purdue University, Lafayette, IN.

Karam,
J. T.
, and
Franke,
M. E.
, 1967, “
The Frequency Response of Pneumatic Lines,” ASME J. Basic Eng.,
89(2), pp. 371–378.

[CrossRef]
Roberts,
W. J.
, 1963, “
Experimental Dynamic Response of Fluid Lines,” M.S. thesis, Purdue University, Lafayette, IN.

Regetz
,
J. D., Jr.
, 1960, An Experimental Determination of the Dynamic Response of a Long Hydraulic Line, National Aeronautics and Space Administration, Washington, DC.

Goldschmied,
F. R.
, 1968, “
On the Dynamic Response of Viscous Compressible Fluids in Rigid Tubes With Volume Termination as a Function of the Stokes Number,” National Aeronautics and Space Administration, Washington, DC, Memorandum No. NASA TM X-53785.

Kantola,
R.
, 1970, “
Transient Response of Fluid Lines Including Frequency Modulated Inputs,” ASME J. Basic Eng.,
93(2), pp. 274–281.

D'Souza,
A. F.
, and
Oldenburger,
R.
, 1964, “
Dynamic Response of Fluid Lines,” ASME J. Basic Eng., Ser. D,
86(3), pp. 589–598.

[CrossRef]
Wongputorn,
P.
, 2001, “
Time Domain Simulation of Systems with Fluid Transmission Lines,” M.S. thesis, The University of Texas at Arlington, Arlington, TX.

Wongputorn,
P.
,
Hullender,
D.
,
Woods,
R.
, and
King,
J.
, 2003, “
A Simplified Method for Formulating the Simulation Diagram for Systems Containing Lines with Fluid Transients,” ASME Paper No. FEDSM2003-45246.

Wongputorn,
P.
,
Hullender,
D.
,
Woods,
R.
, and
King,
J.
, 2005, “
Application of MATLAB Functions for Simulation of Systems With Lines With Fluid Transients,” ASME J. Fluids Eng.,
127(1), pp. 177–182.

[CrossRef]
Levi,
E. C.
, 1959, “
Complex-Curve Fitting,” IRE Trans. Autom. Control,
AC-4(1), pp. 37–43.

[CrossRef]
Sanathanan,
C. K.
, and
Koerner,
J.
, 1974, “
Synthesis of Transfer Function From Frequency Response Data,” Int. J. Syst. Sci.,
5(1), pp. 51–54.

[CrossRef]
Ljung,
L.
, 1993, “
Some Results on Identifying Linear Systems Using Frequency Domain,” 32nd IEEE Conference on Decision and Control (CDC), San Antonio, TX, Dec. 15–17, pp. 3534–3538.

De Vries,
D. K.
, and
Van den Hof,
P. M. J.
, 1998, “
Frequency Domain Identification With Generalized Orthonormal Basis Functions,” IEEE Trans. Autom. Control,
43(5), pp. 656–669.

[CrossRef]
Bayard,
D. S.
, 1994, “
High-Order Multivariable Transfer Function Curve Fitting: Algorithms, Sparse Matrix Methods and Experimental Results,” Automatica,
30(9), pp. 1439–1444.

[CrossRef]
Jasteh,
S.
, 2015, “
Considerations for Generating Accurate Linear Transfer Functions for Laminar Flow Transmission Line Dynamics,” M.S. thesis, The University of Texas at Arlington, Arlington, TX.

Mote,
B.
, 2015, “
Application of Inverse Frequency Algorithm to Nonlinear Fluid Line Transfer Functions,” The University of Texas at Arlington, Arlington, TX.

Stephens,
M. L.
,
Lambert,
A. M.
,
Simpson,
A. R.
, and
Vitkovsky,
J. P.
, 2011, “
Calibrating the Water Hammer Response of a Field Pipe Network by Using a Mechanical Damping Model,” ASCE J. Hydraul. Eng.,
137(10), pp. 1225–1237.

[CrossRef]Hullender, D. A., 2002, “
Transfer Function Approximations for High or Infinite-Order Engineering Systems,” Lecture Notes, Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX (submitted).

Hullender,
D. A.
, 2016, “
Alternative Approach to Modeling Transients in Smooth Pipe With Low Turbulent Flow,” ASME J. Fluids Eng.,
138(12), p. 121202.

[CrossRef]
Holland,
C. M.
,
Blade,
R. J.
, and
Dorsch,
R. G.
, 1965, “
Attenuation of Sinusoidal Perturbations Superimposed on Laminar Flow of a Liquid in a Long Line,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA TN D-3099.

Bergant,
A.
,
Simpson,
A. R.
, and
Vitkovsk,
J.
, 2001, “
Developments in Unsteady Pipe Flow Friction Modelling,” ASCE J. Hydraul. Res.,
39(3), pp. 249–257.

[CrossRef]Hullender, D. A., 2018, “
Software Code, Suggestions, and Applications,” University of Texas at Arlington, Arlington, TX.