Pressure Distributions in Porous Ducts of Arbitrary Cross Section

[+] Author and Article Information
J. C. P. Huang, H. S. Yu

Engineering Research Department, Minnesota Mining and Manufacturing Co., St. Paul, Minn.

J. Fluids Eng 95(3), 342-348 (Sep 01, 1973) (7 pages) doi:10.1115/1.3447036 History: Received January 12, 1973; Online October 12, 2010


A general analytical method has been developed to approximate the pressure distribution along a porous duct of an arbitrary cross section with uniform fluid extraction or addition through the wall. Application of this method is made to a variety of cross sections including circular tubes, parallel plate channels, elliptical ducts, rectangular ducts, annular ducts, and isosceles triangular ducts. Comparisons have been made with results from existing literature on cases of the circular porous tube and the parallel porous plate channel in which exact solutions are available. A numerical solution for the case of a parallel channel consisting of an impermeable wall on one side and a porous wall on the other side is also presented. One important filter duct design criterion has been found for each of the above cases. At a critical wall Reynolds number, defined by flow velocity normal to the wall and the equivalent diameter of the duct, the pressure gradient along the filter duct approaches zero. The zero pressure gradient in a filter duct ensures uniform filtration of solid particles.

Copyright © 1973 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In