Experiments on the Resistance Law for Non-Darcy Compressible Gas Flows in Porous Media

[+] Author and Article Information
B. A. Masha, G. S. Beavers, E. M. Sparrow

School of Mechanical and Aerospace Engineering, University of Minnesota, Minneapolis, Minn.

J. Fluids Eng 96(4), 353-357 (Dec 01, 1974) (5 pages) doi:10.1115/1.3447169 History: Received August 16, 1974; Online October 12, 2010


Experiments were performed to examine the resistance law for non-Darcy compressible gas flow through a porous material. A particular objective of the investigation was to determine whether a resistance law deduced from incompressible flow experiments could be applied to flows with significant density changes. To this end, the coefficients appearing in the Forchheimer resistance law were first determined from experiments in the incompressible flow regime. These values were then used in an analytical model employing the Forchheimer resistance law to predict streamwise pressure distributions for subsonic compressible flow through the porous material. Corresponding experimental pressure distributions were measured for flow Reynolds numbers up to 81.6. At the highest Reynolds number of the tests the density changed by about a factor of two along the length of the porous medium. The greatest discrepancy between experimental and predicted pressures at any Reynolds number was 2 percent. This agreement lends strong support to the validity of using the incompressible Forchheimer resistance law for subsonic flows in which density changes are significant.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In