An Experimental Investigation of Transition of a Plane Poiseuille Flow

[+] Author and Article Information
M. A. Karnitz, M. C. Potter, M. C. Smith

Michigan State University, East Lansing, Mich.

J. Fluids Eng 96(4), 384-388 (Dec 01, 1974) (5 pages) doi:10.1115/1.3447174 History: Received September 30, 1974; Online October 12, 2010


The transition process of laminar flow between parallel plates is investigated experimentally. This problem has recently gained much attention with several reported works; however, the maximum transition Reynolds number reported has been approximately 3000 (based on average velocity and channel height) whereas the theoretical critical Reynolds number is 7700. Primary emphasis in this work is on approaching the theoretical limit in an experimental facility. A high aspect ratio (70 to 1) channel was used with air as the fluid. As the disturbance level at the entrance to the parallel plate section was reduced the transition Reynolds number increased monotonically. At a disturbance level of 0.3 percent the transition Reynolds number was 6700. Near transition small nearly sinusoidal waves in the critical shear layer were observed. The frequency of the waves was approximately 70 hertz, close to the frequency associated with the Tollmien-Schlichting waves of the critical point of linear theory. Sinusoidal waves preceded a turbulent burst which possessed an essentially plane front as it traveled downstream. As the Reynolds number was increased the bursting rate increased and the flow eventually became completely turbulent.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In