Three-Dimensional Turbulent Boundary Layer in a Rotating Helical Channel

[+] Author and Article Information
A. K. Anand, B. Lakshminarayana

Department of Aerospace Engineering, The Pennsylvania State University, University Park, Pa.

J. Fluids Eng 97(2), 197-210 (Jun 01, 1975) (14 pages) doi:10.1115/1.3447252 History: Received February 19, 1974; Online October 12, 2010


An analytical and experimental investigation of the characteristics of a three-dimensional turbulent boundary layer in a rotating helical channel is reported in this paper. Expressions are developed for the velocity profiles in the inner layer, where the viscous effects dominate, and the outer layer, where the viscous effects are small. The prediction of boundary layer growth is based on the momentum integral technique. The analysis is valid for incompressible flow through a rotor blade row with small camber. The velocity profiles, wall shear stress and limiting streamline angles are measured inside the passages of a flat plate inducer at various radial and chordwise locations using rotating probes. The measurements are in general agreement with the predictions. Flow near the blade tip is found to be highly complex due to interaction of blade boundary layers and the annulus wall, resulting in appreciable radial inward flow as well as a defect in mainstream velocity near the midpassage. A wall shear stress correlation, which includes the effect of both Reynolds number and rotation parameter, is derived from the measured data.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In