Fully Developed Laminar Flow in Curved Rectangular Channels

[+] Author and Article Information
K. C. Cheng, Ran-Chau Lin, Jenn-Wuu Ou

Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada

J. Fluids Eng 98(1), 41-48 (Mar 01, 1976) (8 pages) doi:10.1115/1.3448205 History: Received January 20, 1975; Online October 12, 2010


The Navier-Stokes equations are solved by a numerical method for steady, fully developed, incompressible, laminar flow in curved rectangular channels considering the curvature ratio effect in the formulation. Solutions are obtained for aspect ratios 1, 2, 5 and 0.5 and Dean number ranges from 5 to 715, for example, for the case of square channel. It is found that an additional counter-rotating pair of vortices appears near the central outer region of the channel in addition to the familiar secondary flow at a certain higher Dean number depending on the aspect ratio. This phenomenon is consistent with Dean’s centrifugal instability problem and the secondary flow patterns with two pairs of counter-rotating vortices have not been reported in the past. The correlation equations for the friction factor are developed. The friction factor results are compared with the available theoretical and experimental results for the case of curved square channel and the agreement is found to be good.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In