Potential Flow Solution for Crossflow Impingement of a Slot Jet on a Circular Cylinder

[+] Author and Article Information
H. Miyazaki, E. M. Sparrow

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Fluids Eng 98(2), 249-255 (Jun 01, 1976) (7 pages) doi:10.1115/1.3448276 History: Received February 25, 1976; Online October 12, 2010


A closed-form solution has been obtained for the potential flow about a circular cylinder situated in an impinging slot jet. Among other results, the potential flow solution yields the free stream velocity for the boundary layer adjacent to the cylinder surface. A basic feature of the solution is the division of the flow field into subdomains, thereby making it possible to employ harmonic functions that are appropriate to each such subdomain. The boundary conditions on the free streamline and the conditions of continuity between the subdomains are satisfied by a combination of least squares and point matching constraints. Numerical evaluation of the solution was carried out for cylinder diameters greater or equal to the nozzle width and for a range of dimensionless separation distances between the nozzle and the impingement surface. Results are presented for the velocity and pressure distributions on the cylinder surface, for the position of the free streamline, and for the velocity gradients at the stagnation point. The latter serve as input information to the Nusselt number and skin friction expressions that are given by boundary layer theory. Comparisons were made with available experimental results for the pressure distribution, velocity gradient, and Nusselt number, and good agreement was found to prevail in the stagnation region.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In