RESEARCH PAPERS: Additional Technical Papers

Simple Predictions for the Sonic Conditions in a Real Gas

[+] Author and Article Information
P. A. Thompson, D. A. Sullivan

Max-Planck-Institut fur Stromungsforschung, Federal Republic of W. Germany

J. Fluids Eng 99(1), 217-225 (Mar 01, 1977) (9 pages) doi:10.1115/1.3448526 History: Received December 08, 1976; Online October 12, 2010


The steady isentropic flow of a fluid which satisfies an arbitrary equation of state is treated, with emphasis on the prediction of pressure, density, velocity, and massflow at the sonic state. The isentrope P(v) is described by a limited number of thermodynamic parameters, the most important ones being the soundspeed c and fundamental derivative Γ. Using this description, an application of the Bernoulli equation and appropriate thermodynamic relations yields simple closed-form predictions for the sonic state. These predictions are recognizable as generalizations of well-known ideal gas formulas, but are applicable to fluids very far removed from the ideal gas state, even including liquids. Comparisons in several cases for which precise independent solutions are available suggest that the methods found here are accurate. A derived similarity principle allows the accurate prediction of sonic properties from any single given sonic property.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In