RESEARCH PAPERS: Additional Technical Papers

Effect of Upstream Flow Processes on Hydrodynamic Development in a Duct

[+] Author and Article Information
E. M. Sparrow, C. E. Anderson

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Fluids Eng 99(3), 556-560 (Sep 01, 1977) (5 pages) doi:10.1115/1.3448846 History: Received May 26, 1977; Online October 12, 2010


Consideration is given to the developing laminar flow in a parallel plate channel, with the fluid being drawn from a large upstream space. The flow fields upstream and downstream of the channel inlet were solved simultaneously. A finite-difference technique was employed which was facilitated by a coordinate transformation that telescoped the broadly extended flow domain into a more compact size. For the solutions, the Reynolds number was assigned values from 1 to 1000, covering the range from viscous-dominated flows to those where both viscous and inertia effects are relevant. Streamline maps indicate that whereas a low Reynolds number flow glides smoothly into the channel, a high Reynolds number flow has to turn sharply to enter the channel, with the result that the sharply turning fluid tends to overshoot at first and then readjust. A significant amount of upstream predevelopment occurs at low and intermediate Reynolds numbers. Thus, for example, at Re = 1 and 100, the center-line velocities at inlet are, respectively, 1.37 and 1.13 times the mean velocity (the fully developed center-line velocity is 1.5 times the mean). The upstream pressure drop, measured in terms of the velocity head, is substantially increased by viscous effects at low and intermediate Reynolds numbers.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In