Computational Fluid Dynamics Applied to Three-Dimensional Nonreacting Inviscid Flows in an Internal Combustion Engine

[+] Author and Article Information
M. D. Griffin, J. D. Anderson, E. Jones

Department of Aerospace Engineering, University of Maryland, College Park, Md. 20742

J. Fluids Eng 101(3), 367-372 (Sep 01, 1979) (6 pages) doi:10.1115/1.3448979 History: Received June 29, 1979; Online October 12, 2010


The three-dimensional inviscid flowfield between the face of the piston and the top of the cylinder in a reciprocating internal combustion engine is calculated for a complete four-stroke cycle (intake, compression, power, exhaust). The fluid dynamic aspects are emphasized; combustion is simply modeled by constant-volume heat addition. The computational method is an explicit time-dependent finite-difference solution of the governing fluid dynamic equations. The results show that a well-defined three-dimensional swirling flow pattern is established during the intake stroke, and that this swirl persists throughout the complete four-stroke cycle. Such a flowfield will have direct influence on I.C. engine combustion phenomena. Moreover, the radial distributions of pressure and temperature show a nearly-axisymmetric behavior, while the three-dimensional results in the valve plane show a striking similarity to previous two-dimensional results. The present investigation is the first three-dimensional calculation of the flowfield for all four strokes, and has important implications for future work in the application of computational fluid dynamics to I. C. engine analysis.

Copyright © 1979 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In