0
RESEARCH PAPERS

Lower Mode Response of Circular Cylinders in Cross-Flow

[+] Author and Article Information
W. W. Durgin

Mechanical Engineering, Alden Research Laboratory, Worcester Polytechnic Institute, Holden, Mass. 01520

P. A. March

Closed Conduit Flow Section, Alden Research Laboratory, Worcester Polytechnic Institute, Holden, Mass. 01520

P. J. Lefebvre

Worcester Polytechnic Institute, Worcester, Mass.

J. Fluids Eng 102(2), 183-189 (Jun 01, 1980) (7 pages) doi:10.1115/1.3240642 History: Received January 25, 1979; Online October 26, 2009

Abstract

Transverse amplitude responses of a circular cylinder in cross-flow were determined as a function of reduced velocities for a variety of spring constants and damping coefficients. Maxima were found at reduced velocities of 5 and 16, and were of comparable amplitude. The first resonance, designated the “fundamental mode,” was due to normal vortex street excitation of the spring-mass system. The second resonance, designated the “lower mode,” occurred when the natural frequency was approximately one-third of the normal vortex shedding frequency. By assuming that the driving force was sinusoidal, it was possible to evaluate the lift coefficients at resonance. Lift coefficients for the lower mode behaved similarly with amplitude ratio but were an order of magnitude lower than lift coefficients for the fundamental mode. A mechanism was used to oscillate the cylinder transversely at prescribed frequencies and amplitudes. Dominant wake frequencies were determined from a frequency analysis of the hot-wire signal for a range of velocities and a fixed frequency of oscillation. It was found that synchronization of the shedding frequency to the forcing frequency did not take place for the lower mode. The familiar “lock-in” region, or frequency synchronization over finite bandwidth, was observed for the fundamental mode only. Since the frequency associated with normal vortex shedding was not suppressed when oscillations took place in the lower mode, it would seem that a low frequency vortex street had not replaced the normal one. It is likely, then, that the spring-mounted cylinder responded subharmonically to the exciting force resulting from vortex shedding. In this regard, however, it was curious that subharmonic response was not found at a frequency ratio of 0.5 as it was at 0.33. A conceptual model, which incorporated features of both the low frequency vortex street and subharmonic response, was developed which accounted for lower mode response at a frequency ratio of 0.33 as well as the lack of response at 0.5.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In