Node Selection for Two-Point Boundary-Value Problems

[+] Author and Article Information
C. M. Ablow, S. Schechter

SRI International, Menlo Park, Calif. 94025

W. H. Zwisler

ATAC Corporation, Mountain View, Calif. 94041

J. Fluids Eng 107(3), 364-369 (Sep 01, 1985) (6 pages) doi:10.1115/1.3242494 History: Received June 27, 1983; Online October 26, 2009


The solutions of two-point boundary-value problems often have boundary layers, narrow regions of sharp variation, that can occur in any part of the interval between the points. A finite difference method of numerical solution will generally require more closely spaced nodes in the boundary layers than elsewhere. An automatic method is needed for achieving the irregular spacing when the location of the boundary layer is not known in advance. Several automatic node-insertion or node-movement methods have been proposed. A new node-movement method is presented that is optimal under the criterion of producing the least sum of squares of the truncation errors at the nodes. For the Keller box scheme applied to a system of N coupled first-order differential equations this truncation-error minimizing (TEM) method increases the system size to N+6 equations. The campylotropic coordinate transformation method and other published methods based on heuristically derived monitor functions are node-movement methods that involve systems of only N+1 or N+2 first order equations. A comparison is made of the accuracies of several such methods and the TEM method in the solution of a standard problem.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In