Numerical Simulation of Spray Cooling Pond Performance

[+] Author and Article Information
N. Moussiopoulos

Institut für Technische Thermodynamik, Universität Karlsruhe, Federal Republic of Germany

J. Fluids Eng 109(2), 179-185 (Jun 01, 1987) (7 pages) doi:10.1115/1.3242641 History: Received December 17, 1985; Online October 26, 2009


A mathematical model for predictions of the performance of spray cooling ponds is presented. In contrast to previous methods, the present model requires neither empirical information from field measurements nor an adaptation of model constants. The airflow is described by partial differential equations for the vorticity and the stream function. Turbulence is taken into account by a modified version of the k-ε model. Temperature and humidity of air are obtained by solving appropriate transport differential equations. The equation system is solved by means of a finite difference method. The utilized numerical algorithm has been proved to be reasonably accurate. Predicted distributions for the dependent variables are presented for a circular spray cooling pond and the case of zero wind velocity. Results for the thermal performance of this pond are in good agreement with observations.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In