Added Mass and Damping for Cylinder Vibrations Within a Confined Fluid Using Deforming Finite Elements

[+] Author and Article Information
R. Chilukuri

JAYCOR, San Diego, CA 92121

J. Fluids Eng 109(3), 283-288 (Sep 01, 1987) (6 pages) doi:10.1115/1.3242662 History: Online October 26, 2009


Added mass and fluid damping coefficients for vibrations of an inner cylinder that is enclosed by a concentric outer cylinder are determined by finite element analysis of the unsteady, laminar, incompressible flow in the annulus. Continuously deforming space-time finite elements are used to track the moving cylinder and the changing shape of the space domain. For small cylinder vibration amplitudes, the present results agree well with the work of earlier investigators who solved the linearized Navier-Stokes equations on a fixed mesh. Fluid damping coefficients are shown to increase with vibration amplitude. Added mass coefficients may either increase or decrease with increasing vibration amplitude.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In