A Reynolds-Stress Model for Near-Wall and Low-Reynolds-Number Regions

[+] Author and Article Information
Nobuyuki Shima

College of Engineering, Shizuoka University, Hamamatsu 432, Japan

J. Fluids Eng 110(1), 38-44 (Mar 01, 1988) (7 pages) doi:10.1115/1.3243507 History: Received March 12, 1986; Online October 26, 2009


The Reynolds stress model for high Reynolds numbers proposed by Launder et al. is extended to near-wall and low-Reynolds-number regions. In the development of the model, particular attention is given to the high anisotropy of turbulent stresses in the immediate vicinity of a wall and to the behavior of the exact stress equation at the wall. A transport model for the turbulence energy dissipation rate is also developed by taking into account its compatibility with the stress model at the wall. The model and the low-Reynolds-number model of Hanjali’c and Launder are applied to fully-developed pipe flow. Comparison of the numerical results with Laufer’s data shows that the present model gives significantly improved predictions. In particular, the present model is shown to reproduce the sharp peak in the distribution of the streamwise turbulence intensity in the immediate vicinity of the wall.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In