0
RESEARCH PAPERS

The Law of the Wall for Swirling Flow in Annular Ducts

[+] Author and Article Information
R. J. Kind, F. M. Yowakim, S. A. Sjolander

Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada

J. Fluids Eng 111(2), 160-164 (Jun 01, 1989) (5 pages) doi:10.1115/1.3243617 History: Received February 22, 1988; Online October 26, 2009

Abstract

Expressions for the logarithmic portion of the law of the wall are derived for the axial and tangential velocity components of swirling flow in annular ducts. These expressions involve new shear-velocity scales and curvature terms. They are shown to agree well with experiment over a substantial portion of the flow near both walls of an annulus. The resultant velocity data also agree with the law of the wall. The success of the proposed logarithmic expressions implies that the mixing-length model used in deriving them correctly describes flow-velocity behavior. This model indicates that the velocity gradient at any height y in the near-wall region is determined by the wall shear stress, not by the local shear stress. This suggests that the influence of wall shear stress is dominant and that it determines the near-wall wall flow even in flows with curvature and pressure gradient. A physical explanation is suggested for this.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In