Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique

[+] Author and Article Information
A. Kubota, H. Kato, H. Yamaguchi, M. Maeda

Department of Naval Architecture, University of Tokyo, Tokyo 113 Japan

J. Fluids Eng 111(2), 204-210 (Jun 01, 1989) (7 pages) doi:10.1115/1.3243624 History: Received February 04, 1988; Revised October 14, 1988; Online October 26, 2009


The structure of flow around unsteady cloud cavitation on a stationary two-dimensional hydrofoil was investigated experimentally using a conditional sampling technique. The unsteady flow velocity around the cloud cavitation was measured by a Laser Doppler Anemometry (LDA) and matched with the unsteady cavitation appearance photographed by a high-speed camera. This matching procedure was performed using data from pressure fluctuation measurements on the foil surface. The velocities were divided into two components using a digital filter, i.e., large-scale (low-frequency) and small-scale (high frequency) ones. The large-scale component corresponds with the large-scale unsteady cloud cavitation motion. In this manner, the unsteady structure of the cloud cavitation was successfully measured. The experimental result showed that the cloud cavitation observed at the present experiment had a vorticity extremum at its center and a cluster containing many small cavitation bubbles. The convection velocity of the cavitation cloud was much lower than the uniform velocity. The small-scale velocity fluctuation was not distributed uniformly in the cavitation cloud, but was concentrated near its boundary.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In