A Cavitation Susceptibility Meter With Optical Cavitation Monitoring—Part One: Design Concepts

[+] Author and Article Information
L. d’Agostino, A. J. Acosta

California Institute of Technology, Pasadena, Calif. 91125

J. Fluids Eng 113(2), 261-269 (Jun 01, 1991) (9 pages) doi:10.1115/1.2909490 History: Received July 20, 1989; Online May 23, 2008


This work is concerned with the design of a Cavitation Susceptibility Meter based on the use of a venturi tube for the measurement of the active cavitation nuclei concentration in water samples as a function of the applied tension. The operation of the Cavitation Susceptibility Meter is analyzed and the main considerations leading to the proposed design are illustrated and critically discussed. The results of this analysis indicate that the operational range is mainly limited by nuclei interference, flow separation and saturation (choking), and suggest to develop a Cavitation Susceptibility Meter where: (a) the flow possesses a laminar potential core throughout the venturi throat section in all operational conditions; (b) the pressure at the venturi throat is determined from the upstream pressure and the local flow velocity; (c) the detection of cavitation and the measurement of the flow velocity are carried out optically by means of a Laser Doppler Velocimeter; (d) a custom-made electronic Signal Processor incorporating a frequency counter is used for real time data generation and temporary storage; (e) a computerized system performs the final acquisition and reduction of the data.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In