0
RESEARCH PAPERS

Navier-Stokes Calculations of Transonic Flows Past Cavities

[+] Author and Article Information
S. Srinivasan, O. Baysal

Mechanical Engineering and Mechanics Department, Old Dominion University, Norfolk, VA 23529-0247

J. Fluids Eng 113(3), 368-376 (Sep 01, 1991) (9 pages) doi:10.1115/1.2909506 History: Received June 06, 1989; Online May 23, 2008

Abstract

Presented in this paper is a computational investigation of subsonic and transonic flows past three-dimensional deep and transitional cavities. Simulations of these self-induced oscillatory flows have been generated through time-accurate solutions of the Reynolds averaged, full Navier-Stokes equations, using the explicit MacCormack scheme. The Reynolds stresses have been included through the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties. The results of an experimental investigation have been used not only to validate the time-averaged results, but also to investigate the effects of varying the Mach number and the incoming boundary-layer thickness. Time series analyses have been performed for the instantaneous pressure values on the cavity floor and compared with the results obtained by a predictive formula. While most of the comparisons have been favorable, some discrepancies have been observed, particularly on the rear face. The present results help understanding the three-dimensional and unsteady features of the separations, vortices, the shear layer, as well as some of the aeroacoustic phenomena of compressible cavity flows.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In