0
RESEARCH PAPERS

Computational Analysis of the Transonic Flow Field of Two-Dimensional Minimum Length Nozzles

[+] Author and Article Information
B. M. Argrow, G. Emanuel

School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019

J. Fluids Eng 113(3), 479-488 (Sep 01, 1991) (10 pages) doi:10.1115/1.2909521 History: Received July 31, 1990; Online May 23, 2008

Abstract

The method of characteristics is used to generate supersonic wall contours for two-dimensional, straight sonic line (SSL) and curved sonic line (CSL) minimum length nozzles for exit Mach numbers of two, four and six. These contours are combined with subsonic inlets to determine the influence of the inlet geometry on the sonic-line shape, its location, and on the supersonic flow field. A modified version of the VNAP2 code is used to compute the inviscid and laminar flow fields for Reynolds numbers of 1,170, 11,700, and 23,400. Supersonic flow field phenomena, including boundary-layer separation and oblique shock waves, are observed to be a result of the inlet geometry. The sonic-line assumptions made for the SSL prove to be superior to those of the CSL.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In