On the Motion of Solid Spheres Falling Through Viscous Fluids in Vertical and Inclined Tubes

[+] Author and Article Information
Joseph A. C. Humphrey, Hiroyuki Murata

Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720

J. Fluids Eng 114(1), 2-11 (Mar 01, 1992) (10 pages) doi:10.1115/1.2909996 History: Received March 20, 1991; Online May 23, 2008


Little is known about the rotational motion of spheres falling through viscous fluids in inclined tubes. Most studies have investigated translational and rotational motions in vertical tubes. These works show that in creeping flow a sphere’s translational and rotational velocities are independent. Rotation is predicted and observed for eccentric spheres while concentric spheres fall without rotation. Experiments were performed by us with steel spheres of radius r falling through glycerine in a tube of variable inclination angle and of radius R such that r/R = 0.882, 0.757, 0.442. For the cases involving two or three spheres falling together various modes of motion were observed. Especially interesting was the finding that the rotation direction of a sphere gradually changes from positive (opposite to downhill rolling) to negative (in the sense of downhill rolling) as the tube inclination angle is increased. This is allowed by the inertia-induced lift force which maintains a sphere at a very small but finite distance from the inclined tube wall. However, by further increasing the inclination angle the lift force eventually becomes smaller than the apparent weight of the sphere which, upon finally contacting the tube wall, descends by rolling along it. Examination of our findings in the light of earlier results for vertical and inclined tubes suggests that, through its effect on sphere eccentricity, inertia indirectly affects the rotational motion of a falling sphere when Rep 10−3 but it does not significantly affect the translational motion when Rep <1. None of the inclined tube studies performed to date has been completely devoid of inertia-induced lift effects.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In