On Turbulent Flows Dominated by Curvature Effects

[+] Author and Article Information
G. C. Cheng

SECA, Inc., Huntsville, Ala

S. Farokhi

The University of Kansas, Lawrence, Kansas 66045

J. Fluids Eng 114(1), 52-57 (Mar 01, 1992) (6 pages) doi:10.1115/1.2909999 History: Received January 23, 1991; Online May 23, 2008


A technique for improving the numerical predictions of turbulent flows with the effect of streamline curvature is developed. Separated flows and the flow in a curved duct are examples of flow fields where streamline curvature plays a dominant role. New algebraic formulations for the eddy viscosity μt incorporating the k–ε turbulence model are proposed to account for various effects of streamline curvature. The loci of flow reversal (where axial velocities change signs) of the separated flows over various backward-facing steps are employed to test the capability of the proposed turbulence model in capturing the effect of local curvature. The inclusion of the effect of longitudinal curvature in the proposed turbulence model is validated by predicting the distributions of the longitudinal velocity and the static pressure in an S-bend duct and in 180 deg turn-around ducts. The numerical predictions of different curvature effects by the proposed turbulence models are also reported.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In