0
RESEARCH PAPERS

Boundary-Layer Transition in Accelerating Flows With Intense Freestream Turbulence: Part 2—The Zone of Intermittent Turbulence

[+] Author and Article Information
M. F. Blair

United Technologies Research Center, East Hartford, Conn. 06108

J. Fluids Eng 114(3), 322-332 (Sep 01, 1992) (11 pages) doi:10.1115/1.2910033 History: Received October 16, 1991; Online May 23, 2008

Abstract

Hot-wire anemometry was employed to examine the laminar-to-turbulent transition of low-speed, two-dimensional boundary layers for two (moderate) levels of flow acceleration and various levels of grid-generated freestream turbulence. Flows with an adiabatic wall and with uniform-flux heat transfer were explored. Conditional discrimination techniques were employed to examine the zones of flow within the transitional region. This analysis demonstrated that as much as one-half of the streamwise-component unsteadiness, and much of the apparent anisotropy, observed near the wall was produced, not by turbulence, but by the steps in velocity between the turbulent and inter-turbulent zones of flow. Within the turbulent zones u′/v′ ratios were about equal to those expected for equilibrium boundary-layer turbulence. Near transition onset, however, the turbulence kinetic energy within the turbulent zones exceeded fully turbulent boundary-layer levels. Turbulent-zone power-spectral-density measurements indicate that the ratio of dissipation to production increased through transition. This suggests that the generation of the full equilibrium turbulent boundary-layer energy cascade required some time (distance) and may explain the very high TKE levels near onset.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In