0
RESEARCH PAPERS

Parametrical Investigation of the Interaction Between Turbulent Wall Shear Layers and Normal Shock Waves, Including Separation

[+] Author and Article Information
J. K. Kaldellis

The Institute for the Development and Management of Natural Resources, Athens, Greece

J. Fluids Eng 115(1), 48-55 (Mar 01, 1993) (8 pages) doi:10.1115/1.2910112 History: Received July 11, 1991; Online May 23, 2008

Abstract

The existence of strong shock waves plays a major role in the performance of modern aero-mechanical devices, since it is primarily responsible not only for the shock induced total pressure drop, but also for the increased shear layer losses due to flow separation. In this paper a fast energy-type integral method along with an approximate shock-turbulent shear layer interaction procedure are presented. This integral method, based on the two-zone model, is able to predict attached and fully detached shear flows. An extended turbulence model is also used in order to take the influence of the turbulence inside the interaction region better into account. The external flow pressure distribution results from an improved and extended form of an approximate small disturbance theory. A detailed investigation is carried out to estimate the influence of the inlet Mach number, the shear layer characteristics and the confinement of the geometry upon the static pressure field. The resulting method has been successfully applied to several test cases including ones where separation appears. Comparison between results of previous calculations, experimental data and results of the proposed method is also presented, along with the convergence history of the shear layer—shock wave interaction procedure. Finally, the method has been applied to one-stage high pressure supersonic flow compressor with normal shock appearance inside the rotor of the machine. The major conclusion drawn from the present work is that the shear layer characteristics (e.g., displacement thickness and form factor) have a dominant effect upon the flow field near the interaction region. Additionally, the proposed method requires no more than five overall iterations to reproduce the real flow field for all cases examined.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In