0
RESEARCH PAPERS

The Flow Structure and Statistics of a Passive Mixing Tab

[+] Author and Article Information
W. J. Gretta

Fluid Systems Engineering, Inc., Morristown, NJ 07960

C. R. Smith

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015

J. Fluids Eng 115(2), 255-263 (Jun 01, 1993) (9 pages) doi:10.1115/1.2910133 History: Received March 30, 1992; Online May 23, 2008

Abstract

Water channel flow visualization and anemometry studies were conducted to examine the flow structure and velocity statistics in the wake of a passive mixing tab designed for enhancement of cross-stream mixing by generation of flow structures characteristic of turbulent boundary layers. Flow visualization reveals that the mixing tab generates a wake comprising a combination of counter rotating, streamwise vortices enveloped by distinct hairpin vortex structures. The counter rotating streamwise vortices are observed to stimulate a strong ejection of fluid along the symmetry plane, which results in very rapid cross-stream mixing. The hairpin vortices are found to undergo successive amalgamation and coalescence downstream of the device, which aids in the streamwise mixing and outward penetration of ejected fluid. After an initially intense mixing process, the mixing tab wake rapidly develops mean velocity, turbulence intensity, and boundary layer integral properties characteristic of a significantly thickened turbulent boundary layer.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In