Fluid Dynamics of Sprays—1992 Freeman Scholar Lecture

[+] Author and Article Information
William A. Sirignano

Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92717-2700

J. Fluids Eng 115(3), 345-378 (Sep 01, 1993) (34 pages) doi:10.1115/1.2910148 History: Received November 20, 1992; Revised February 18, 1993; Online May 23, 2008


Various theoretical and computational aspects of the fluid dynamics of sprays are reviewed. Emphasis is given to rapidy vaporizing sprays on account of the richness of the scientific phenomena and the several, often disparate, time scales. Attention is given to the behavior of individual droplets including the effects of forced convection due to relative droplet-gas motion, Stefan convection due to the vaporization or condensation of the liquid, internal circulation of the liquid, interactions with neighboring droplets, and interactions with vortical eddies. Flow field details in the gas boundary layer and wake and in the liquid droplet interior are examined. Also, the determinations of droplet lift and drag coefficients and Nusselt and Sherwood numbers and their relationships with Reynolds number, transfer number, Prandtl and Schmidt numbers, and spacing between neighboring droplets are extensively discussed. The spray equations are examined from several aspects; in particular, two-continua, multi-continua, discrete-particle, and probabilistic formulations are given. The choice of Eulerian or Lagrangian representation of the liquid-phase equations within these formulations is discussed including important computational issues and the relationship between the Lagrangian method and the method of characteristcis. Topics for future research are suggested.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In