0
RESEARCH PAPERS

Segmented Domain Decomposition Multigrid Solutions for Two and Three-Dimensional Viscous Flows

[+] Author and Article Information
Kumar Srinivasan, Stanley G. Rubin

Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221

J. Fluids Eng 115(4), 608-613 (Dec 01, 1993) (6 pages) doi:10.1115/1.2910187 History: Received February 10, 1993; Revised April 21, 1993; Online May 23, 2008

Abstract

Several viscous incompressible two and three-dimensional flows with strong inviscid interaction and/or axial flow reversal are considered with a segmented domain decomposition multigrid (SDDMG) procedure. Specific examples include the laminar flow recirculation in a trough geometry and in a three-dimensional step channel. For the latter case, there are multiple and three-dimensional recirculation zones. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit, lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable non-staggered grid formulation. The segmented domain strategy is adapted herein for three-dimensional flows and is extended to allow for disjoint subdomains that do not share a common boundary.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In