Velocity Characteristics of a Confined Highly-Turbulent Swirling Flow Near a Swirl Plate (Data Bank Contribution)

[+] Author and Article Information
R. X. Shi

Navistar International Corp., Melrose Park, IL

B. Chehroudi

UIC Engine Laboratory, Department of Mechanical Engineering, University of Illinois at Chicago, P. O. Box 4348, M/C 251, Chicago, IL 60680

J. Fluids Eng 116(4), 685-693 (Dec 01, 1994) (9 pages) doi:10.1115/1.2911836 History: Received May 24, 1993; Revised March 21, 1994; Online May 23, 2008


Axial and tangential components of the velocity vector are measured using a Laser Doppler Velocimeter (LDV) system in a confined highly turbulent isothermal swirling flow near a swirl plate. The flow has essential features of swirl-stabilized flame combustors. Throughout this study, a constant “nominal” swirl number of 0.36 is generated by air jets from a set of slots in a swirl plate. A low-speed coflowing air, referred to as dilution air, is uniformly distributed around the swirling flow by use of an annular-shaped honeycomb. Three different swirling air flow rates with a fixed dilution flow rate are studied and results are discussed. Detailed mean axial and tangential velocity profiles at several axial locations show that the size and the strength of the central recirculation zone are strongly dependent on the swirling air flow rate. Increasing the swirl air flow rate increases both the radial extent and the axial length of the central recirculation zone. Mean total and reversed air flow rates are calculated by integrating the mean axial velocity profiles. In the setup used in this study and up to the axial positions investigated, the reversed flow rate as a percent of the total flow rate seems to be linearly proportional to the reversed-flow zone area, being independent of the swirl air flow rate at a fixed nominal swirl number value. As swirl air flow rate is increased, the root mean square (rms) of the axial and tangential velocity fluctuations increase monotonically at almost all radial positions except sufficiently away from the swirl plate and near the chamber axis. Several velocity biasing correction methods are reviewed. A simple velocity biasing correction scheme is applied in this study to investigate its effect on the conclusions reached in the study.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In