Effect of Selective Modification of Turbulence on Two-Equation Models for Particle-Laden Turbulent Flows

[+] Author and Article Information
K. D. Squires

Department of Mechanical Engineering, The University of Vermont, Burlington, VT 05405

J. K. Eaton

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305

J. Fluids Eng 116(4), 778-784 (Dec 01, 1994) (7 pages) doi:10.1115/1.2911849 History: Received July 20, 1993; Revised May 03, 1994; Online May 23, 2008


The effect of selective modification of turbulence by particles on K–ε models for dilute two-phase flows has been evaluated using data from direct numerical simulation of particle-laden isotropic turbulence. Simulation results were obtained using as many as 643 grid points and up to 106 particles. The ratio of the particle time constant to large-eddy turbulence time scale varied from 0.14 to 1.50 and particle mass loadings of 0.0, 0.1, 0.5, and 1.0 were used in the simulations. Simulation results demonstrate that the balance between enstrophy production by turbulent vortex stretching and viscous destruction is disrupted by momentum exchange with the particle cloud. Selective modification of the turbulence by lighter particles results in a significant attenuation of enstrophy production by turbulent vortex stretching. The decrease in enstrophy production causes the model constant Cε2 to increase for large mass loading. Heavy particles are found to act as a sink of enstrophy for all mass loadings used in the simulations. Preferential concentration of lighter particles by turbulence, however, can generate vorticity fluctuations, especially at higher mass loadings. For these cases conventional modeling of the destruction of dissipation by particles term in the ε equation requires that Cε3 be negative.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In