0
RESEARCH PAPERS

Flow of Newtonian and Non-Newtonian Fluids in a Concentric Annulus With Rotation of the Inner Cylinder

[+] Author and Article Information
J. M. Nouri, J. H. Whitelaw

Imperial College of Science, Technology and Medicine, Mechanical Engineering Department, Thermofluids Section, Exhibition Road, London England SW7 2BX

J. Fluids Eng 116(4), 821-827 (Dec 01, 1994) (7 pages) doi:10.1115/1.2911856 History: Received June 25, 1993; Revised February 10, 1994; Online May 23, 2008

Abstract

Mean velocity and the corresponding Reynolds shear stresses of Newtonian and non-Newtonian fluids have been measured in a fully developed concentric flow with a diameter ratio of 0.5 and at a inner cylinder rotational speed of 300 rpm. With the Newtonian fluid in laminar flow the effects of the inner shaft rotation were a uniform increase in the drag coefficient by about 28 percent, a flatter and less skewed axial mean velocity and a swirl profile with a narrow boundary close to the inner wall with a thickness of about 22 percent of the gap between the pipes. These effects reduced gradually with bulk flow Reynolds number so that, in the turbulent flow region with a Rossby number of 10, the drag coefficient and profiles of axial mean velocity with and without rotation were similar. The intensity of the turbulence quantities was enhanced by rotation particularly close to the inner wall at a Reynolds number of 9,000 and was similar to that of the nonrotating flow at the higher Reynolds number. The effects of the rotation with the 0.2 percent CMC solution were similar to those of the Newtonian fluids but smaller in magnitude since the Rossby number with the CMC solution is considerably higher for a similar Reynolds number. Comparison between the results of the Newtonian and non-Newtonian fluids with rotation at a Reynolds number of 9000 showed similar features to those of nonrotating flows with an extension of non-turbulent flow, a drag reduction of up to 67 percent, and suppression of all fluctuation velocities compared with Newtonian values particularly the cross-flow components. The results also showed that the swirl velocity profiles of both fluids were the same at a similar Rossby number.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In