An Experimental Data Base for the Computational Fluid Dynamics of Reacting and Nonreacting Methanol Sprays

[+] Author and Article Information
V. G. McDonell, G. S. Samuelsen

UCI Combustion Laboratory, University of California, Irvine, CA 92717-3550

J. Fluids Eng 117(1), 145-153 (Mar 01, 1995) (9 pages) doi:10.1115/1.2816804 History: Received May 06, 1993; Revised April 27, 1994; Online December 04, 2007


The present data set consists of detailed measurements obtained within methanol sprays produced by a research atomizer which is operated with three atomizing air modes: none, non-swirling, and swirling. In addition, the cases with nonswirling and swirling atomizing air are characterized under reacting conditions. In each case, state-of-the-art diagnostics are applied. Measurements of the gas phase velocities in both the single and two-phase cases, droplet size distributions, and vapor concentration are obtained. The data are reported in a standardized format to ensure usefulness as modeling challenges. The results obtained reveal the presence of significant interaction between phases and significant changes in spray structure as a result of altering the atomizing air characteristics. Efforts have been directed toward delineation of errors and comparison with existing data sets where possible. The results is a comprehensive data base for vaporizing sprays under reacting and non-reacting conditions which permit a systematic variation in aerodynamic effects to be explored.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In