0
RESEARCH PAPERS

The Effect of Rotary Arms on Corotating Disk Flow

[+] Author and Article Information
John Girard, Scott Abrahamson, Kevin Uznanski

Aerospace Engineering and Mechanics, University of Minnesota, 110 Union St., S.E., Minneapolis, MN 55455

J. Fluids Eng 117(2), 259-262 (Jun 01, 1995) (4 pages) doi:10.1115/1.2817138 History: Received November 08, 1993; Revised January 10, 1994; Online December 04, 2007

Abstract

This investigation studied the impact of rotary style arms on the flow between corotating disks contained by a stationary cylindrical enclosure. Both ventilated and nonventilated hub configurations were considered. The particular geometry used represents a simplified model for common disk drives. Flow visualizations were performed over the Reynolds number range of 3.4 × 104 to 3.4 × 105 . The arms were observed to dramatically alter the flow field and to produce an azimuthal pressure gradient throughout the flow field. The dominant feature of the flow between two disks was the arm wake. Moreover, an exchange of fluid across the shroud opening, which provided arm access, was observed. Arm effects became stronger as the arm tips were positioned closer to the hub. The combination of arms and radial through flow was studied over a similar Reynolds number range. In this case, the flow field remained dominated by arm effects, although some effects arising from the radial flow were observed.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In