0
RESEARCH PAPERS

Quantitative Visualization of a Submerged Pseudoplastic Jet Using Particle Image Velocimetry

[+] Author and Article Information
A. Shekarriz, J. R. Phillips, T. D. Weir

Fluid Dynamics Laboratory, Pacific Northwest Laboratory, Richland, WA 99352

J. Fluids Eng 117(3), 369-373 (Sep 01, 1995) (5 pages) doi:10.1115/1.2817271 History: Received March 30, 1994; Revised October 31, 1994; Online December 04, 2007

Abstract

A preliminary experimental study of a pseudoplastic jet flow is reported in this paper. The velocity field was measured using Particle Image Velocimetry. Unlike a Newtonian jet, the pseudoplastic jet was observed to experience a sudden drop in its velocity at a reproducible position downstream of the nozzle for the range of velocities examined. This position moved downstream with an increase in the nozzle exit velocity. The center-line streamwise velocity decayed as X–15 to X–30 within the terminating region of the jet for three different nozzle exit velocities of 2.43, 3.17, and 5.42 m/s. This decay is in contrast to X–1 decay for a turbulent or laminar Newtonian jet. The location of the terminating region did not appear to scale with Reynolds number, Plasticity number, or Hedstrom number. At Reynolds numbers of 3000 and 6400, the instantaneous streamwise velocity maps indicated that the flow was fairly laminar, with a sinuous instability appearing at the higher Reynolds number condition. Close observation of the jet indicated that local turbulence could exist within regions of high shear rate. Further detailed study is required to confirm this observation.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In