0
RESEARCH PAPERS

An Experimental Investigation of the Flow Through an Axial-Flow Pump

[+] Author and Article Information
W. C. Zierke, W. A. Straka, P. D. Taylor

Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804

J. Fluids Eng 117(3), 485-490 (Sep 01, 1995) (6 pages) doi:10.1115/1.2817288 History: Received November 26, 1994; Revised April 14, 1995; Online December 04, 2007

Abstract

The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. The objectives of this experiment were to provide a database for comparison with three-dimensional, turbulent flow computations, to evaluate engineering models, and to improve our physical understanding of many of the phenomena involved in this complex flow field. This summary paper briefly describes the experimental facility, as well as the experimental techniques—such as flow visualization, static-pressure measurements, laser Doppler velocimetry, and both slow- and fast-response pressure probes. Then, proceeding from the inlet to the exit of the pump, the paper presents highlights of experimental measurements and data analysis, giving examples of measured physical phenomena such as endwall boundary layers, separation regions, wakes, and secondary vortical structures. In conclusion, this paper provides a synopsis of a well-controlled, larger scope experiment that should prove helpful to those who wish to use the database.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In