Preliminary Investigation of the Use of Air Injection to Mitigate Cavitation Erosion

[+] Author and Article Information
R. E. A. Arndt, C. R. Ellis, S. Paul

St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Minneapolis, MN 55414-2196

J. Fluids Eng 117(3), 498-504 (Sep 01, 1995) (7 pages) doi:10.1115/1.2817290 History: Received April 11, 1994; Revised April 17, 1995; Online December 04, 2007


This project was initiated as part of a new research and development focus to improve hydropower generation. One aspect of the problem is severe cavitation erosion which is experienced when hydroturbines are operated at best power or in spinning reserve. Air injection has been used successfully to minimize or eliminate cavitation erosion in other applications. Thus, an investigation was initiated to determine whether or not air injection would be an effective solution for turbine erosion problems. A specially instrumented hydrofoil of elliptic planform and a NACA 0015 cross section was tested at flow velocities up to 20 m s–1 , at various values of cavitation index. Although pit sizes were measured on a soft aluminum insert, pitting rate was not measured directly but was inferred from direct measurement of impulsive pressures on the surface of the hydrofoil and by monitoring accelerometers mounted at the base of the hydrofoil. Cavitation noise was also measured by a hydrophone positioned in the water tunnel test section. Air was injected through small holes in the leading edge of the foil. Air injection was found to be very effective in minimizing erosion as inferred from all three cavitation erosion detection techniques.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In