0
RESEARCH PAPERS

High-Frequency Heat Flux Sensor Calibration and Modeling

[+] Author and Article Information
D. G. Holmberg, T. E. Diller

Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0238

J. Fluids Eng 117(4), 659-664 (Dec 01, 1995) (6 pages) doi:10.1115/1.2817319 History: Received April 20, 1994; Revised February 16, 1995; Online December 04, 2007

Abstract

A new method of in-situ heat flux gage calibration is evaluated for use in convective facilities with high heat transfer and fast time response. A Heat Flux Microsensor (HFM) was used in a shock tunnel to simultaneously measure time-resolved surface heat flux and temperature from two sensors fabricated on the same substrate. A method is demonstrated for estimating gage sensitivity and frequency response from the data generated during normal transient test runs. To verify heat flux sensitivity, shock tunnel data are processed according to a one-dimensional semi-infinite conduction model based on measured thermal properties for the gage substrate. Heat flux signals are converted to temperature, and vice versa. Comparing measured and calculated temperatures allows an independent calibration of sensitivity for each data set. The results match gage calibrations performed in convection at the stagnation point of a free jet and done by the manufacturer using radiation. In addition, a finite-difference model of the transient behavior of the heat flux sensor is presented to demonstrate the first-order response to a step input in heat flux. Results are compared with shock passing data from the shock tunnel. The Heat Flux Microsensor recorded the heat flux response with an estimated time constant of 6 μs, which demonstrates a frequency response covering DC to above 100 kHz.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In