0
RESEARCH PAPERS

Wall Suction Effects on the Structure of Fully Developed Turbulent Pipe Flow

[+] Author and Article Information
D. Sofialidis, P. Prinos

Hydraulics Laboratory, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

J. Fluids Eng 118(1), 33-39 (Mar 01, 1996) (7 pages) doi:10.1115/1.2817507 History: Received November 15, 1994; Revised May 25, 1995; Online December 04, 2007

Abstract

The effects of wall suction on the structure of fully developed pipe flow are studied numerically by solving the Reynolds averaged Navier-Stokes equations. Linear and nonlinear k-ε or k-ω low-Re models of turbulence are used for “closing” the system of the governing equations. Computed results are compared satisfactorily against experimental measurements. Analytical results, based on boundary layer assumptions and the mixing length concept, provide a law of the wall for pipe flow under the influence of low suction rates. The analytical solution is found in satisfactory agreement with computed and experimental data for a suction rate of A = 0.46 percent. For the much higher rate of A = 2.53 percent the above assumptions are not valid and analytical velocities do not follow the computed and experimental profiles, especially in the near-wall region. Near-wall velocities, as well as the boundary shear stress, are increased with increasing suction rates. The excess wall shear stress, resulting from suction, is found to be 1.5 to 5.5 times the respective one with no suction. The turbulence levels are reduced with the presence of the wall suction. Computed results of the turbulent shear stress uv are in close agreement with experimental measurements. The distribution of the turbulent kinetic energy k is predicted better by the k-ω model of Wilcox (1993). Nonlinear models of the k-ε and k-ω type predict the reduction of the turbulence intensities u’, v’, w’, and the correct levels of v’ and w’ but they underpredict the level of u’.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In