The Turbulent Incompressible Jet in a Curved Coflow

[+] Author and Article Information
M. V. Ötügen, F. Girlea, P. M. Sforza

Polytechnic University, Mechanical, Aerospace and Manufacturing Engineering, Six Metrotech Center, Brooklyn, NY 11201

J. Fluids Eng 118(2), 300-306 (Jun 01, 1996) (7 pages) doi:10.1115/1.2817377 History: Received September 26, 1994; Revised October 23, 1995; Online December 04, 2007


The effects of small streamline curvature on the growth and axial flow development of a turbulent incompressible jet in a curved coflow was investigated experimentally. The jet streamline curvature was achieved by introducing the initially round jet tangentially into a stream flowing through a curved channel of square cross-section. The jet issued from a straight pipe and had a fully developed velocity profile at the exit plane. The jet Reynolds number and the coflow-to-jet-velocity ratio were 4300 and 0.11, respectively. A single component laser Doppler anemometer was used to measure the streamwise velocity. Axial mean velocity and turbulence intensity profiles were measured at various streamwise locations in both the plane of curvature and the surface perpendicular to the plane of curvature. The results indicate that the jet growth and turbulence intensity are influenced by the small streamline curvature. The growth rate of the curved jet in the plane of curvature is slightly increased compared to that of a straight jet. However, the growth of the same curved jet is suppressed in the plane perpendicular to the plane of curvature. In the plane of curvature, the inner jet half-width is larger than the outer jet half-width. The mean velocity profiles in this plane are nearly Gaussian when the lateral distance is normalized by the respective inner and outer side jet half-widths. The axial turbulence intensity profiles show asymmetry in the plane of curvature with a pronounced peak on the outer side of the jet.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In