0
RESEARCH PAPERS

Review: CFD Applications in the Automotive Industry

[+] Author and Article Information
M. N. Dhaubhadel

Ford Motor Company, Dearborn, MI; Automated Analysis Corporation, Ann Arbor, MI

J. Fluids Eng 118(4), 647-653 (Dec 01, 1996) (7 pages) doi:10.1115/1.2835492 History: Received March 28, 1996; Revised July 18, 1996; Online January 22, 2008

Abstract

A general review of Computational Fluid Dynamics (CFD) applications in the automotive industry is presented. CFD has come a long way in influencing the design of automotive components due to continuing advances in computer hardware and software as well as advances in the numerical techniques to solve the equations of fluid flow. The automotive industry’s interest in CFD applications stems from its ability to improve automotive design and to reduce product cost and cycle time. We are able to utilize CFD more and more in day-to-day automotive design, and we can expect better conditions for CFD applications in the coming years. CFD applications in the automotive industry are as numerous as are the codes available for the purpose. Applications range from system level (e.g., exterior aerodynamics) to component level (e.g., disk brake cooling). The physics involved cover a wide range of flow regimes (i.e., incompressible, compressible, laminar, turbulent, unsteady, steady, subsonic and transonic flows). Most of the applications fall in the incompressible range and most are turbulent flows. Although most of the flows encountered are unsteady in nature, a majority of them can be approximated as steady cases. The challenge today is to be able to simulate accurately some very complex thermo-fluids phenomena, and to be able to get CFD results fast, in order to effectively apply them in the “dynamic” design environment of frequent design changes. The key is to utilize CFD in the early design phases so that design changes and fix-ups later are minimized. Proper use of CFD early, helps to significantly reduce prototyping needs and consequently, reduce cost and cycle time.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In