0
RESEARCH PAPERS

Stability of a Compressible Laminar Wall-Jet With Heat Transfer

[+] Author and Article Information
O. Likhachev

Aerospace and Mechanical Engineering Department, University of Arizona, Tucson, AZ 85721

A. Tumin

Fluid Mechanics and Heat Transfer Department, Tel-Aviv University, Tel-Aviv, Israel

J. Fluids Eng 118(4), 824-828 (Dec 01, 1996) (5 pages) doi:10.1115/1.2835515 History: Received August 10, 1995; Revised August 12, 1996; Online January 22, 2008

Abstract

The flow of a plane, laminar, subsonic perfect gas wall jet with heat transfer through the wall was investigated theoretically. For the case under consideration the entire surface was maintained at a constant temperature which differed from the temperature of the ambient gas. The velocity and temperature distribution across the flow were calculated for a variety of temperature differences between the ambient gas and the surface. The boundary layer equations representing these flows were solved by using the Illingworth-Stewartson transformation, thus extending the classical Glauert’s solution to a thermally non-uniform flow. The effects of heat transfer on the linear stability characteristics of the wall jet were assessed by making the local parallel flow approximation. Two kinds of unstable eigenmodes coexisting at moderate Reynolds numbers are significantly affected by the heat transfer. The influence of cooling or heating on the stability of the flow was expected in view of the experience accumulated in incompressible boundary layers, i.e. heating destabilizes and cooling stabilizes the flows. Cooling of the wall affects the small scale disturbances more profoundly, contrary to the results obtained for the large scale disturbances.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In