0
RESEARCH PAPERS

Numerical Simulation of Drag Reducing Turbulent Flow in Annular Conduits

[+] Author and Article Information
Idir Azouz

Department of Physical Science and Engineering, Southern Utah University, Cedar City, Utah

Siamack A. Shirazi

Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK

J. Fluids Eng 119(4), 838-846 (Dec 01, 1997) (9 pages) doi:10.1115/1.2819506 History: Received July 15, 1996; Revised July 08, 1997; Online January 22, 2008

Abstract

Inadequate transport of rock cuttings during drilling of oil and gas wells can cause major problems such as excessive torque, difficulty to maintain the desired orientation of the drill string, and stuck or broken pipe. The problem of cuttings transport is aggravated in highly inclined wellbores due to the eccentricity of the annulus which results in nonuniformity of the flowfield within the annulus. While optimum cleaning of the borehole can be achieved when the flow is turbulent, the added cost due to the increased frictional losses in the flow passages may be prohibitive. A way around this problem is to add drag-reducing agents to the drilling fluid. In this way, frictional losses can be reduced to an acceptable level. Unfortunately, no model is available which can be used to predict the flow dynamics of drag-reducing fluids in annular passages. In this paper, a numerical model is presented which can be used to predict the details of the flowfield for turbulent annular flow of Newtonian and non-Newtonian, drag-reducing fluids. A one-layer turbulent eddy-viscosity model is proposed for annular flow. The model is based on the mixing-length approach wherein a damping function is used to account for near wall effects. Drag reduction effects are simulated with a variable damping parameter in the eddy-viscosity expression. A procedure for determining the value of this parameter from pipe flow data is discussed. Numerical results including velocity profiles, turbulent stresses, and friction factors are compared to experimental data for several cases of concentric and eccentric annuli.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In