Prediction of Solid/Free-Surface Juncture Boundary Layer and Wake of a Surface-Piercing Flat Plate at Low Froude Number

[+] Author and Article Information
Madhu Sreedhar, Fred Stern

Institute of Hydraulic Research, University of Iowa, Iowa City, IA 52242-1585

J. Fluids Eng 120(2), 354-362 (Jun 01, 1998) (9 pages) doi:10.1115/1.2820655 History: Received April 07, 1996; Revised January 29, 1998; Online December 04, 2007


Results are reported of a RANS simulation investigation on the prediction of turbulence-driven secondary flows at the free-surface juncture of a surface-piercing flat plate at low Froude numbers. The turbulence model combines a nonlinear eddy viscosity model and a modified version of a free-surface correction formula. The different elements of the model are combined and the model constants calibrated based on the premises that the anisotropy of the normal stresses is mainly responsible for the dynamics of the flow in the juncture region, and an accurate modeling of the normal-stress anisotropy as obtained from the data is a primary requirement for the successful prediction of the overall flow field. The predicted mean velocity, streamwise vorticity, turbulent kinetic energy, and other quantities at the juncture are then compared with data and analyzed with regard to findings of related studies. In agreement with the experimental observations, the simulated flow at large depths was essentially two-dimensional and displayed all the major features of zero pressure gradient boundary layer and wake, including the anisotropy of normal stresses in the near-wall region. In the boundary-layer free-surface juncture region, the major features of interest that were predicted include the generation of secondary flows and the thickening of the boundary layer near the free surface. In the wake free-surface juncture region, even though secondary flows and a thickening of the wake width near the free surface were predicted in accordance with the experimental observations, the overall comparison with the experiment was not as satisfactory as the boundary-layer juncture. This is partly due to the lack of a strong coherent flow structure in the wake juncture and the presence of possible wave effects in the wake in the experiments. An examination of the terms in the Reynolds-averaged streamwise vorticity equation reconfirmed the importance of the anisotropy of the normal Reynolds stresses in the production of streamwise vorticity. The free-surface wave elevations were negligible for the present model problem for the nonzero Froude number studied. Finally, concluding remarks are presented with regards to extensions for practical geometries such as surface ship flows.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In