First and Second-Order Accurate Schemes for Two-Fluid Models

[+] Author and Article Information
Iztok Tiselj, Stojan Petelin

“Jožef Stefan” Institute, Jamova 39, 1111 Ljubljana, Slovenia

J. Fluids Eng 120(2), 363-368 (Jun 01, 1998) (6 pages) doi:10.1115/1.2820656 History: Received February 14, 1997; Revised December 05, 1997; Online December 04, 2007


The six-equation two-fluid model of two-phase flow taken from the RELAP5/MOD3 computer code has been used to simulate three simple transients: a two-phase shock tube problem, the Edwards Pipe experiment, and water hammer due to rapid valve closure. These transients can be characterized as fast transients, since their characteristic time-scales are determined by the sonic velocity. First and second-order accurate numerical methods have been applied both based on the well-known, Godunov-type numerical schemes. Regarding the uncertainty of the two-fluid models in today’s large computer codes for the nuclear thermal-hydraulics, use of second-order schemes is not always justified. While this paper shows the obvious advantage of second-order schemes in the area of fast transients, first-order accurate schemes may still be sufficient for a wide range of two-phase flow transients where the convection terms play a minor role compared to the source terms.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In