High-Speed PIV Analysis Using Compressed Image Correlation

[+] Author and Article Information
Douglas P. Hart

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

J. Fluids Eng 120(3), 463-470 (Sep 01, 1998) (8 pages) doi:10.1115/1.2820685 History: Received June 26, 1996; Revised May 04, 1998; Online January 22, 2008


With the development of Holographic PIV (HPIV) and PIV Cinematography (PIVC), the need for a computationally efficient algorithm capable of processing images at video rates has emerged. This paper presents one such algorithm, sparse array image correlation. This algorithm is based on the sparse format of image data—a format well suited to the storage of highly segmented images. It utilizes an image compression scheme that retains pixel values in high intensity gradient areas eliminating low information background regions. The remaining pixels are stored in sparse format along with their relative locations encoded into 32 bit words. The result is a highly reduced image data set that retains the original correlation information of the image. Compression ratios of 30:1 using this method are typical. As a result, far fewer memory calls and data entry comparisons are required to accurately determine tracer particle movement. In addition, by utilizing an error correlation function, pixel comparisons are made through single integer calculations eliminating time consuming multiplication and floating point arithmetic. Thus, this algorithm typically results in much higher correlation speeds and lower memory requirements than spectral and image shifting correlation algorithms. This paper describes the methodology of sparse array correlation as well as the speed, accuracy, and limitations of this unique algorithm. While the study presented here focuses on the process of correlating images stored in sparse format, the details of an image compression algorithm based on intensity gradient thresholding is presented and its effect on image correlation is discussed to elucidate the limitations and applicability of compression based PIV processing.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In