Transport of Heavy Particles in a Three-Dimensional Mixing Layer

[+] Author and Article Information
Qunzhen Wang

Thiokol Corp., Box 707, M/S 252, Brigham City, UT 84302

Kyle D. Squires

Mechanical and Aerospace Engineering Department, Box 876106, Arizona State University, Tempe, AZ 85287-6106

J. Fluids Eng 120(3), 613-620 (Sep 01, 1998) (8 pages) doi:10.1115/1.2820708 History: Received May 31, 1996; Revised June 09, 1997; Online January 22, 2008


Particle transport in a three-dimensional, temporally evolving mixing layer has been calculated using large eddy simulation of the incompressible Navier-Stokes equations. The initial fluid velocity field was obtained from a separate simulation of fully developed turbulent channel flow. The momentum thickness Reynolds number ranged from 710 in the initial field to 4460 at the end of the calculation. Following a short development period, the layer evolves nearly self-similarly. Fluid velocity statistics are in good agreement with both the direct numerical simulation results of Rogers and Moser (1994) and experimental measurements of Bell and Mehta (1990). Particles were treated in a Lagrangian manner by solving the equation of motion for an ensemble of 20,000 particles. The particles have the same material properties as in the experiments of Hishida et al. (1992), i.e., glass beads with diameters of 42, 72, and 135 μm. Particle motion is governed by drag and gravity, particle-particle collisions are neglected, and the coupling is from fluid to particles only. In general, the mean and fluctuating particle velocities are in reasonable agreement with the experimental measurements of Hishida et al. (1992). Consistent with previous studies, the Stokes number (St) corresponding to maximum dispersion increases as the flow evolves when defined using a fixed fluid timescale. Definition of the Stokes number using the time-dependent vorticity thickness, however, shows a maximum in dispersion throughout the simulation for St ≈ 1.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In