Analysis of Fluid-Structure Interaction by Means of Dynamic Unstructured Meshes

[+] Author and Article Information
F. J. Blom, P. Leyland

IMHEF—DGM, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland

J. Fluids Eng 120(4), 792-798 (Dec 01, 1998) (7 pages) doi:10.1115/1.2820740 History: Received December 29, 1997; Revised August 06, 1998; Online December 04, 2007


This paper presents a computational analysis on forced vibration and fluid-structure interaction in compressible flow regimes. A so-called staggered approach is pursued where the fluid and structure are integrated in time by distinct solvers. Their interaction is then taken into account by a coupling algorithm. The unsteady fluid motion is simulated by means of an explicit time-accurate solver. For the fluid-structure interaction problems which are considered here the effects due to the viscosity can be neglected. The fluid is hence modeled by the Euler equations for compressible inviscid flow. Unstructured grids are used to discretise the fluid domain. These grids are particularly suited to simulate unsteady flows over complex geometries by their capacity of being dynamically refined and unrefined. Dynamic mesh adaptation is used to enhance the computational precision with minimal CPU and memory constraints. Fluid-structure interaction involves moving boundaries. Therefore the Arbitrary Lagrange Euler method (ALE-method) is adopted to solve the Euler equations on a moving domain. The deformation of the mesh is controlled by means of a spring analogy in conjunction with a boundary correction to circumvent the principle of Saint Venant. To take advantage of the differences between fluid and structure time scales, the fluid calculation is subcycled within the structural time step. Numerical results are presented for large rotation, pitching oscillation and aeroelastic motion of the NACA0012 airfoil. The boundary deformation is validated by comparing the numerical solution for a flat plate under supersonic flow with the analytical solution.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In