0
RESEARCH PAPERS

Steady and Unsteady Computations of Turbulent Flows Induced by a 4/45° Pitched-Blade Impeller

[+] Author and Article Information
K. Wechsler, M. Breuer, F. Durst

Institute of Fluid Mechanics, University of Erlangen-Nürnberg, Cauerstr. 4, D-91058 Erlangen, Germany

J. Fluids Eng 121(2), 318-329 (Jun 01, 1999) (12 pages) doi:10.1115/1.2822210 History: Received July 13, 1998; Revised January 25, 1999; Online January 22, 2008

Abstract

The present paper summarizes steady and unsteady computations of turbulent flow induced by a pitched-blade turbine (four blades, 45° inclined) in a baffled stirred tank. Mean flow and turbulence characteristics were determined by solving the Reynolds averaged Navier-Stokes equations together with a standard k-ε turbulence model. The round vessel had a diameter of T = 152 mm. The turbine of diameter T/3 was located at a clearance of T/3. The Reynolds number (Re) of the experimental investigation was 7280, and computations were performed at Re = 7280 and Re = 29,000. Techniques of high-performance computing were applied to permit grid sensitivity studies in order to isolate errors resulting from deficiencies of the turbulence model and those resulting from insufficient grid resolution. Both steady and unsteady computations were performed and compared with respect to quality and computational effort. Unsteady computations considered the time-dependent geometry which is caused by the rotation of the impeller within the baffled stirred tank reactor. Steady-state computations also considered neglect the relative motion of impeller and baffles. By solving the governing equations of motion in a rotating frame of reference for the region attached to the impeller, the steady-state approach is able to capture trailing vortices. It is shown that this steady-state computational approach yields numerical results which are in excellent agreement with fully unsteady computations at a fraction of the time and expense for the stirred vessel configuration under consideration.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In