The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—Part I: Influence of the Volute

[+] Author and Article Information
Kevin A. Kaupert

Turbomachinery Laboratory, ETH Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland

Thomas Staubli

HTA Luzern, CH-6048 Horw, Switzerland

J. Fluids Eng 121(3), 621-626 (Sep 01, 1999) (6 pages) doi:10.1115/1.2823514 History: Received January 09, 1998; Revised May 17, 1999; Online December 04, 2007


An experimental investigation is presented regarding the unsteady pressure field within a high specific speed centrifugal pump impeller (ωs = 1.7) which operated in a double spiral volute. For this, twenty-five piezoresistive pressure transducers were mounted within a single blade passage and sampled in the rotating impeller frame with a telemetry system. The influence of varying volume flux on the pressure transducers was evaluated in terms of pressure fluctuation magnitudes and phase differences. The magnitude information reveals that the pressure fluctuations from the impeller-volute interaction grew as the volume flux became further removed from the best efficiency point and as the trailing edge of the impeller blade was approached. These fluctuations reached 35% of the pump head in deep part load. The upstream influence of the volute steady pressure field dominates the unsteady pressure field within the impeller at all off design load points. Acquired signal phase information permits the identification of the pressure field unsteadiness within the impeller passage as fundamentally synchronized simultaneously with the volute tongue passing frequency. Special emphasis was placed on the volume flux regime where the pump and impeller pressure discharge characteristic undergo hysteresis, as impeller inlet and outlet recirculation commence and cease. A synthesis of the rotating transducers was performed to obtain unsteady blade loading parameters. The value of the unsteady lift coefficient varies on the order of 200% for a single blade in part load operation (at 45% bep), an abrupt fluctuation occurring as the fore running blade suction side passes a volute tongue. The unsteady moment coefficient and center of pressure are also shown to vary significantly during the impeller-volute tongue interaction.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In