Effects of Nuclei Size Distribution on the Dynamics of a Spherical Cloud of Cavitation Bubbles

[+] Author and Article Information
Yi-Chun Wang

Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan

J. Fluids Eng 121(4), 881-886 (Dec 01, 1999) (6 pages) doi:10.1115/1.2823550 History: Received July 28, 1998; Revised July 06, 1999; Online December 04, 2007


The nonlinear dynamics of a spherical bubble cloud with nuclei size distribution are studied numerically. The spectrum of nuclei is assumed uniform initially. The simulations employ a nonlinear continuum bubbly mixture model with consideration of the presence of bubbles of different sizes. This model is then coupled with the Rayleigh-Plesset equation for the dynamics of bubbles. A numerical method based on the integral representation of the mixture continuity and momentum equations in the Lagrangian coordinates is developed to solve this set of integro-differential equations. Computational results show that the nuclei size distribution has significant effects on the cloud dynamics in comparison to the results for a single bubble size. One important effect is that the bubble collapse is always initiated near the surface of the cloud, even if the cloud has a very small initial void fraction. This effect has an important consequence, namely that the geometric focusing of the bubbly shock wave is always a part of the nonlinear dynamics associated with the collapse of a spherical cloud with nuclei size distribution. The strength of the shock and the oscillation structure behind the shock front are suppressed due to the effects of multiple bubble sizes. Far-field acoustic pressures radiated by two bubble clouds, one of equal-size bubbles and the other with bubble size distribution, are also compared. It is found that the cloud containing bubbles of different sizes emits a larger noise than the cloud of identical bubbles. Explanations for this effect are also presented.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In